
Grant Agreement Number: 257528

KHRESMOI
www.khresmoi.eu

Report on Coupling Manual
and Automatic Annotation

Deliverable number D1.4.2

Dissemination level Public

Delivery date 31st May 2013

Status Final

Author(s) Angus Roberts, Johann Petrak, Niraj Aswani,

This project is supported by the European
Commission under the Information and
Communication Technologies (ICT) Theme of
the 7th Framework Programme for Research
and Technological Development.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 2 of 21

Abstract

The Khresmoi project is building a multi-lingual search and access system for biomedical information
and documents. The project is using automatic recognition of medical entities in text, such as Diseases
and Drugs, to assist with that search. Automatic recognition of these entities is trained by manual
correction of machine annotations. Manual correction proceeds iteratively. That is, an initial set of
automatic annotations are corrected, these corrections are used to improve tha automatic application,
this improved application used to generate further annotations for correction, and so on. Improvements
are generated in two ways. In the first, an evaluation between the automatic annotations and the
corrections is used to drive an error analysis, and thence improvements to application dictionaries,
heuristics and grammars. In the second, manual corrections are used to provide entity features for a
machine learned statistical model of the entities. Results show the approach to lead to a measurable
increase in performance. Iterative improvement is ongoing, as further corrections are collected.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 3 of 21

Table of Contents

1	 Executive summary .. 4	
2	 Introduction .. 4	

2.1	 Background ... 4	
2.2	 Summary of this report .. 5	

3	 Application description .. 5	
3.1	 Term lookup: creating the gazetteers ... 7	
3.2	 Machine learning of Khresmoi entities .. 10	

4	 Iterative development process ... 12	
5	 First iteration – improvement by error analysis ... 14	

5.1	 Description .. 14	
5.2	 Results ... 15	

6	 Second iteration – manual and machine learned corrections 15	
6.1	 Description .. 15	
6.2	 Results ... 15	

7	 Ongoing iterations .. 18	
8	 Conclusion ... 19	
9	 References ... 20	

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 4 of 21

1 Executive summary

• The Khresmoi project is using automatic recognition of medical entities in text, such as
Diseases and Drugs, to assist with search of biomedical documents.

• Automatic recognition is trained iteratively using manually correction of automatic
annotations in text.

• An initial set of automatically created annotations is presented to manual annotators for
correction.

• Corrections are used to improve the performance of the automatic application.

• This improved application is then used to generate further automatic annotations for
correction, and so on, iteratively.

• This report examines how manual and automatic annotation have been coupled in the
Khresmoi project to improve annotation performance.

• It describes how feedback from manual annotation is used to modify automatic annotation
through:

◦ error analysis and the development of dictionary and heuristic based entity recognition

◦ the machine learning of models of the text to assist with automatic annotation.

• A description of the process and its results are presented.

2 Introduction

The Khresmoi project is building a multi-lingual search and access system for biomedical information
and documents [17]. Several technologies are used to improve search, including machine recognition
of medical entities within text, and the linking of these to the Khresmoi Knowledge Base. Automatic
entity recognition is coupled iteratively with manual improvement, in order to drive up performance.
In summary, the process for coupling automatic and manual entity recognition is as follows:

1. an initial machine annotated corpus is created;

2. this is corrected by human annotators;

3. the machine entity recognition model is updated with these corrections;

4. the steps are repeated.

This report describes the system used for the above process, iteration of the process, and the results
achieved in those iterations.

2.1 Background
Manual annotations are corrected according to a set of guidelines and management protocols,
described in Khresmoi deliverable D1.1 “Manual Annotation Guidelines and Management
Protocol”[5], which were themselves based on the project requirements, described in Khresmoi
Deliverable D8.2 “Use case definition including concrete data requirements” [7]. An early version of
the system used to create automatic annotations was described in D1.2 “Initial prototype for semantic

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 5 of 21

annotation of the Khresmoi literature” [2], and early results of the manual annotation described in
D1.3 “Report on Results of the WP1 First Evaluation Phase” [1]. The final corpus of corrected
annotations are collected into the Khresmoi Manually Annotated Reference Corpus, which is released as D1.4.1
with an accompanying report [6].

2.2 Summary of this report
This report starts with a description of the application used to generate automatic annotations, in the
Section “Application description”. This is followed by a description of the process in which manual
and automatic annotation are coupled, in the Section “Iterative development process”. Development
iterations are then described in the remaining sections. “First iteration – improvement by error
analysis” describes the initial iteration, and conclusions that were drawn and improvements made
based on an error analysis of early manual corrections. “Second iteration – machine learned
corrections” presents the first set of results from machine learned corrections. Finally, the Section
“Ongoing iterations” describes the ongoing work to create further sets of automatic annotations for
correction and feedback in to the development process.

3 Application description

The annotation software is written as a GATE application pipeline [8, 9]. The initial version of the
software, as described in [6], was distributed and run on GATECloud.net [10] and equivalent systems.
This initial version was developed into the version described here, in response to (a) analysis of
dictionary lookup terms in the application and (b) analysis of initial manual corrections. The version
described here may also be deployed via GATECloud.net, or within the Khresmoi crawling and
indexing architecture. The application is still subject to development as improvements are suggested
by the manual annotation. The final application will be reported by updates to this deliverable, and in
future Khresmoi deliverables.

The application can be considered as a number of GATE pipelines, each of which consists of GATE
“Processing Resources” (PRs), with each document being run through the pipelines and their
component PRs in order. The PRs and their function are described in the table below, after which two
sections detail key parts of the application, term lookup and machine learning of entities.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 6 of 21

Pipeline Processing resource Description

1. Lexico-syntactic pre-
processing

Tokeniser Standard GATE tokeniser,

 Sentence Splitter GATE regular expression based
sentence splitter

 POS Tagger GATE port of the Brill PPOS
tagger

 Morphological analyser FLEX based morphological
analyser

 Stemmer Porter stemmer

2. Content demarcation Check document type Checks document to see if
following content PRs need to be
run

 BoilerPipe GATE wrapper for BoilerPipe
HML content detector

 Content grammars Content heuristics

3. Stop-words Gazetteer Mark all stop-words from
gazetteer

4. Term lookup POS Tag selection grammar Sets flags on tokens, based on
their POS, specifying whether
they may be at the start, end or
middle of a term

 Gazetteer: abbreviations Look up abbreviations

 Gazetteer: root forms Look up root forms of words

 Gazetteer: stem forms Look up stem form of words

 Gazetteer: string forms Look up string form of words

 Merging grammar Merges all looked up terms into
a single annotation type,
UmlsLookup

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 7 of 21

 Semantic type to name mapping
grammar

Add human readable names for
semantic types

5. Term disambiguation Term selection grammars Disambiguation heuristics: (1)
retain only the longest
UmlsLookup, (2) then among all
the longest, first select all that
come from UMLS preferred
labels, (3) then choose among all
of those the one with the highest
CUI number (see reference [4])

6. Create annotations for
correction

Gazetteer Find all UmlsLookups with
semantic types that match those
used in the manual annotation
guidelines

 Grammars Post process UmlsLookup
annotations into the schema used
by Khresmoi

7. Machine Learning Learning mode SVM, PAUM or
other

Model learning only: learn
model of Khresmoi entities from
manual corrections to
UmlsLookups, using
UmlsLookups, other UMLS
information and lexico-syntactic
annotations as features.

 Application mode SVM, PAUM
or other

Model application only: apply
the above model, using
UmlsLookups, other UMLS
information and lexico-syntactic
annotations as features, to
predict Khresmoi entities.

3.1 Term lookup: creating the gazetteers
The main data source used for the automatic semantic annotation of text within Khresmoi is the
Unified Medical Language System (UMLS) [3]. Gazetteers in step 4 above were created from UMLS
terms and concepts as represented in the Khresmoi knowledge base. For each concept in UMLS, the
UMLS provides a unique concept identifier, or CUI. Each concept is also assigned to one of a small

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 8 of 21

number of high level semantic types, from a semantic network. The identifier of this type is known as
a TUI.

A preferred label is given to each concept by UMLS, and a number of alternative labels. We refer to
these as “prefLabel” and “altLabel” respectively. These form the basis of the gazetteers. As the UMLS
source vocabularies are not intended for natural language processing, however, there is much noise
amongst these labels. We therefore carry out pre-processing to remove this noise, in line with the
methods described by [11,16]. A full description of the gazetteer term processing follows:

1. A SPARQL query was used to retrieve, from the Khresmoi Knowledge Base:

◦ all prefLabels and their associated CUI URIs (instance) and direct semantic type
classes (TUI URIs) where the language tag of the label was “en”. This resulted in 2
399 921 retrieved rows.

◦ all altLabels in the same way: 2 447 977 rows

2. After filtering so that only the direct types corresponding to TUIs relevant to Khresmoi
remain:

◦ prefLabel: 454 127 rows

◦ altLabel: 655 490 rows

3. The labels were then filtered as follows:

◦ filter out labels that contain an at (@) sign

◦ filter labels that contain “not otherwise specified”, “unspecified” “[NOS]” and similar

◦ filter labels that contain “NEC”, “not elsewhere classified”, “unclassified” and similar

◦ filter very short labels

4. Also, labels were changed in the following ways:

◦ remove angular brackets

◦ remove multiple spaces

◦ remove possessives

◦ remove brackets at the end

◦ remove parentheses at the end

◦ invert labels that have a single comma: e.g. “pain, dorsal” → “dorsal pain”

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 9 of 21

5. Then a final stage of filtering:

◦ remove labels with 6 or more tokens

6. If filtered labels match a pattern for being an abbreviation, the label gets added to an
abbreviation list, otherwise to a processed label (standard) list. After this we have:

◦ prefLabel standard: 317 619

◦ prefLabel abbreviations: 1 763

◦ altLabel standard: 561 603

◦ altLabel abbreviations: 12 225

7. All labels that match a list of stopwords are filtered out, after which we have:

◦ prefLabel standard: 317 437

◦ prefLabel abbreviations: 1 761

◦ altLabel standard: 561 529

◦ altLabel abbreviations: 12 172

8. After this, all labels that are not abbreviations are run through GATE, tokenised, POS tagged
and stemmed and all word, number and symbol tokens are selected from the processed labels.
For each original label, three new labels are created:

◦ from all the original strings from the selected tokens

◦ from all the roots from the selected tokens

◦ from all the stems from the selected tokens

9. and from all of these, three gazetteer list files are created for each of the altLabel and
prefLabel lists, giving a total of 8 gazetteer lists:

◦ prefLabel, strings: 317 437

◦ prefLabel, roots: 317 430

◦ prefLabel, stems: 317 430

◦ prefLabel, abbreviations: 1 761

◦ altLabel, strings: 561 529

◦ altLabel, roots: 561 512

◦ altLabel, stems: 561 518

◦ altLabel, abbreviations: 12 172

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 10 of 21

3.2 Machine learning of Khresmoi entities
The final stage of the Khresmoi application consists of a GATE machine learning processing resource.
This operates in two modes.

In the first mode, training, the machine learning PR uses manual annotations to learn a classifier for
the Khresmoi entities. The features for learning instances are provided by the prior steps of the
application. In the second mode, application, the machine learning PR applies the classifier to unseen
documents, constructing instances for classification from the same features used for learning the
classifier.

This is shown in the following diagram, adapted from [12]:

The GATE machine learning PR provides an abstraction layer over multiple machine learning
algorithms. The PR defines how instances should be constructed from text, and what should be used to
define features for those instances. It also deals with mapping multi-class problems (such as the one
faced with the Khresmoi entities) into a series of binary classification problems. The PR is configured
by providing an XML description of the class and of instances, and a definition of the machine
learning library to be used.

The machine learning algorithms used for experiments are the Support Vector Machine (SVM) and
Perceptron implementations shipped with GATE. The precise algorithm used will be described with
each set of results. Both of these algorithms may suffer from imbalanced training data, i.e. the case
where tokens comprising entities are less frequent than tokens comprising non-entities. The GATE
implementations allow this unevenness to be taken into account, by adjusting the margins between
classes in the classifier hyperspace [13].

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 11 of 21

The features used for constructing classification instances are taken from those described in the
following table, precise features will be given with each set of results. Other features may be added in
the future.

Annotation providing
classification instance feature

Windowing Attribute of annotation used

Token From -n to n tokens on each side
of the entity, n reported with
each set of results

String

 Part of Speech

 Root

 Orthography

UMLS gazetteer lookup From -n to n tokens on each side
of the entity, n reported with
each set of results

TUI (semantic type identifier)

 CUI (concept identifier)

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 12 of 21

4 Iterative development process

Manual and automatic annotation are coupled through an iterative process. This is illustrated in the
diagram below, with each step described in the text following the diagram.

Run application over unseen documents

An iteration starts by running the full application over unseen documents. Documents are selected to:

• Be representative of the full Khresmoi document set.

• Be within parameters that make them straightforward for human annotators (e.g. within
certain length limits, and having contentful text).

• Reflect problems that need addressing, given the outcome of previous iterations.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 13 of 21

Human correction of annotations

Automatically annotated documents are uploaded up to GATE Teamware [14], an annotation
workflow web server. GATE Teamware allows complex annotation workflows to be executed online.
These workflows may include distributed manual annotation steps, with human annotators being
assigned a GATE Teamware account. In the case of Khresmoi, a workflow has three criteria:

• Which documents need annotating

• How many manual annotators should annotate each document – allowing double, treble, or
greater levels of annotation.

• Which human annotators should be used for this workflow

• Whether an addition “consensus” step is required.

As annotators login, Teamware assigns documents to them, in order to meet these criteria. If a
consensus step is required, then the results from individual annotators will be passed to a further
annotator for reconciliation of differences.

Quality control and performance metrics

Once a batch of documents has been completed, an initial analysis is carried out to ascertain the
quality of the batch. This includes measurement of inter annotator agreement, and measurement of
automatic / manual agreement (i.e. precision and recall). At this stage, some documents or annotators
may be rejected as outliers. If no consensus set of annotations has been created in the previous step,
annotations may be combined by majority voting – i.e. an annotation will be accepted if it has been
accepted by the majority of annotators.

Manual error analysis

The quality controlled batch is then analysed for differences between the automatic and manual sets,
using tools from the GATE quality control suite. These include a variety of quality control
measurements, together with difference viewers.

Improve grammars and heuristics

The error analysis is used to inform manual improvements to the application's grammars and
heuristics. For example, quality control may show that a particular kind of UMLS term is leading to
false positives. The heuristics for gazetteer filtering could be amended in response to this. As another
example, quality control may show that a only the head word of particular kind of term is annotated
automatically, and so grammar rules could be added to improve recognition of the whole term.

Retrain classifier

In addition to the above grammar improvement step, the corrected documents are used to retrain the
entity classifier.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 14 of 21

5 First iteration – improvement by error analysis

5.1 Description
The first iteration involved no machine learning of corrected annotations. While the application used
was analogous to the non-machine learning parts of the application described above, the definition of
annotations created differed, as described in D1.4.1 [6].

During this iteration, issues concerning the use of UMLS arose from an error analysis of manually
corrected documents. Although UMLS is a rich source of biomedical terms, its source vocabularies
were never created with natural language processing in mind. The use of UMLS for NLP is therefore
problematic, and within the first iteration, this was characterised by three overlapping issues:

• High degree of term ambiguity – many terms in UMLS correspond to multiple concepts.

• Low signal to noise ratio – many terms in UMLS can only be understood in the context of
their source vocabulary (“heart” for example, may refer to the concept for “mouse heart”).
Many others are also ambiguous with words in general language.

• Large numbers of “non-content” terms, such as HTML menus, disclaimers etc., were
annotated leading to a large number of irrelevant and false positive annotations.

These issues led to two problems with early batches used for manual correction:

1. The more annotations there are the harder it is for manual annotators to correct the annotations

2. The number of resulting annotation types makes it difficult to construct meaningful semantic
search queries

3. Contentful text was sometimes swamped by non-content, making it hard for annotators to deal
with.

As discussed in [1] the approach we adopted to deal with the first two problems during manual
annotation is based upon work reported in [4]. Essentially whenever more than one UMLS annotation
is created for the same document span only the annotation with the lowest CUI is retained. The
reasoning behind this approach is that the lower the CUI, the more general the concept. Keeping only
the most general concept should result in fewer annotations which still encode the same information.

The third problem was dealt with by demarcating contentful sections of text. In the application
described in previous sections, this task is carried out by a GATE BoilerPipe processing resource.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 15 of 21

5.2 Results
Corpora and results for this iteration are given in Khresmoi Deliverable D1.3 [1].

6 Second iteration – manual and machine learned
corrections

6.1 Description
The application used for the second iteration resulted from changes made in response to the error
analysis of the first iteration, as described in the previous section, and from changes to the gazetteers,
after an analysis of gazetteer term lists and of annotated documents from earlier iterations. The
application also incorporated machine learning of entities, as a way to take further corrections and feed
them forward to further application improvements. These two changes resulted in the application
described in the earlier Section “Application description” .

The corpus used for this evaluation consisted of the Initial Corpus described in the accompanying
deliverable, D1.4.1 “Manually Annotated Reference Corpus”, comprising 625 documents. As there
was some change in the definitions of semantic types between this Initial Corpus, and those created by
the application, the initial corpus was amended to map the manual annotations to the annotations
created by the application, as follows:

1. “Content” annotations were created from “Section” annotations: the Section annotation was
used from within the consensus set but if none is found there, one was used from the manual
annotation sets;

2. A new annotation type UmlsLookup was created wherever there was a Problem (i.e. Diseases)
or Anatomy annotation. This was carried out for manual annotation sets, consensus sets and
for the original automatic pre-annotation set.

The UmlsLookup annotations (combined Problem, i.e. Diseases, and Anatomy) could then be
compared to the results from the original automatic annotation, and to results from the latest automatic
annotation.

For comparisons, the current application was also amended to only create semantic annotations of the
same UMLS type as in the manual corpus.

6.2 Results
Results given in this section use standard definitions of Precision (P), Recall (R), and F1 measure.
Two variants of each are given:

• Strict, where for two annotations to match, they must cover exactly the same document span;

• Lenient, where for two annotations to match, they must have overlapping document spans.

The Lenient measure allows us to determine how much error is due not to a failure to find an entity,
but to a failure to find the correct extent of the entity (e.g. an application might miss adjectives that are
commonly part of the entity label).

The first set of results compares the manual annotations from the Initial Corpus to two non-machine
learning applications:

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 16 of 21

• Initial Prototype: the initial prototype application, from which manual corrections were made

• Second Prototype: the application reported in this document

The results of these evaluations are given in the following table:

Experiment Key annotations Response annotations Strict Lenient

 P R F1 P R F1

First
prototype

Manual corrections
from first prototype

Automatic annotations
from first prototype

0.56 0.60 0.58 0.67 0.72 0.70

Second
Prototype

Manual corrections
from first prototype

Automatic annotations
from second prototype

0.58 0.64 0.61 0.71 0.78 0.74

The second prototype shows small gains in both precision and recall, for the UMLS semantic types
present in the initial corpus. This is presumably due to the improvements in term lookup, through
improved gazetteers.

The second prototype was augmented with machine learning as described in the section “Machine
Learning of Khresmoi Entities” above, using the GATE Perceptron with Uneven margins algorithm
(PAUM). This application was used to predict chunks where a UMLS term should be found, again
training and comparing against manual corrections where all annotation types had been merged into a
single type. As an initial test of the effectiveness of manual annotations in improving annotation
quality, the application was evaluated over two folds with a 75% holdout. Several feature sets were
evaluated, as described in the following table:

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 17 of 21

 Feature set

 1 TOK 2 +TUI 3 +CUI 4 +THR 5 -SUR

Algorithm and
options (see
GATE manual
for option
descriptions)

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

PAUM

-p 1 -n 10

 -optB 0.3

POS, window -
3 to +3

Yes Yes Yes Yes Yes

Root, window -
3 to +3

Yes Yes Yes Yes Yes

Kind, -3 to +3 Yes Yes Yes Yes Yes

TUI, -8 to +8 No Yes No Yes No

TUI -3 to +3 No No Yes No Yes

CUI -3 to +3 No No Yes No Yes

Thresholds Default Default Default Changed Default

Surround mode True True True True False

The results of evaluations of these feature sets are given below:

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 18 of 21

Experiment Key annotations Response annotations Strict Lenient

 P R F1 P R F1

1 TOK Manual corrections
from first prototype

Automatic annotations
from second prototype
with PAUM

0.89 0.59 0.71 0.98 0.65 0.78

2 +TUI 0.90 0.65 0.76 0.98 0.70 0.82

3 +CUI 0.91 0.65 0.75 0.98 0.70 0.81

4 +THR 0.91 0.63 0.75 0.98 0.68 0.80

5 -SUR 0.30 0.45 0.36 0.60 0.91 0.72

Token level features alone give greater precision and worse recall than in the non-PAUM gazetteer
applications reported in the previous table. This is to be expected: the PAUM is able to generalise the
context of terms, giving precision in detecting them, without the noise present in a dictionary. It does
not, however, have the recall possible with a dictionary. These results are broadly similar to those
reported in [15], and the literature referenced there.

Additional UMLS lookup features (experiments 2 and 3) make use of the term dictionaries in UMLS,
and show some improvement in recall over token features alone, without loss in precision. The
approach in these experiments has successfully combined the precision of the PAUM, with at least
some of the recall of a dictionary. In general, performance is greater when combining the PAUM with
dictionary lookup. Changing thresholds and algorithm surround mode makes little difference.

7 Ongoing iterations

At the time of writing, a further phase of manual annotation correction is ongoing. As batches of this
correction become available, they will be handled in line with the procedures described in the Section
“Iterative Development Process” described above. Given the results presented so far, and given that
significant corrections have already been made to the grammars and heuristics used in the application,
it is possible (and even likely), that most of the future improvements will be made by retraining the
application's classifier model on the corrected documents. This improved model can then in turn be
run on further documents, and these corrected in their turn.

It is expected that further iterations will lead to additional layers of complexity and granularity being
added to existing annotations. For example, annotators could be asked to repeat previous tasks, but this
time judge a more fine-grained semantic type assigned to annotations.

 Results of applying this to the annotation application will be provided when available.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 19 of 21

8 Conclusion

This report has described methods for coupling manual and automatic annotation of Khresmoi entities,
in an iterative process, in an attempt to drive improvement in the automatic annotation. Improvements
are made in two ways: manual changes to grammars and heuristics; and re-training of a classifier.

Both approaches have shown some success. Manual changes to grammars and heuristics resulted in a
small improvement in both precision and recall when measured against corrected annotations. A single
iteration of classifier re-training has shown that precision can be improved with no loss in recall, again
when tested against the manually corrected annotations. It is our expectation that as further manual
correction iterations are performed, we will continue to be able to make improvements to the
application.

As further manually corrected annotations become available, it will be possible to carry out further
experiments with classifier feature sets, and with greater levels of semantic detail being added to
annotations.

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 20 of 21

9 References

[1] Niraj Aswani, Liadh Kelly, Mark Greenwood, Angus Roberts, Matthias Samwald, Natalia
Pletneva, Gareth Jones, Lorraine Goeuriot. Report on Results of the WP1 First Evaluation Phase,
Khresmoi project deliverable D1.3 August 2012.

[2] Mark A. Greenwood, Angus Roberts, Niraj Aswani, Phil Gooch. Initial prototype for semantic
annotation of the Khresmoi literature, Khresmoi project deliverable D1.2 May 2012.

[3] Betsy L. Humphreys and Donald A.B. Lindberg and Harold M. Schoolman and G. Octo Barnett.
The Unified Medical Language System: an informatics research collaboration. J Am Med Inform
Assoc. 1998, 5:1

[4] King, B., Wang, L., et al. (2011). Cenagage Learning at TREC 2011 Medical Track. The
Twentieth Text Retrieval Conference Proceedings (TREC 2011), Gaithersburg, MD. National
Institute for Standards and Technology.

[5] Angus Roberts, Niraj Aswani, Natalia Pletneva, Celia Boyer, Thomas Heitz, Kalina Bontcheva,
Mark A. Greenwood. Manual Annotation Guidelines and Management Protocol, Khresmoi project
deliverable D1.1 , February 2012.

[6] Mark A. Greenwood, Angus Roberts, Niraj Aswani, Johann Petrak. Manually Annotated Reference Corpus,
Khresmoi project deliverable D1.4.1, May 2013.

[7] Use case definition including concrete data requirements. Khresmoi project deliverable D8.2

[8] H. Cunningham, et al. Text Processing with GATE (Version 6). University of Sheffield
Department of Computer Science. 15 April 2011. ISBN 0956599311

[9] H. Cunningham, V. Tablan, A. Roberts, K. Bontcheva (2013) Getting More Out of Biomedical Documents
with GATE's Full Lifecycle Open Source Text Analytics. PLoS Comput Biol 9(2): e1002854.
doi:10.1371/journal.pcbi.1002854

[10] V. Tablan, I. Roberts, H. Cunningham, and K. Bontcheva. GATECloud.net: a Platform for
Large-Scale, Open-Source Text Processing on the Cloud. Philosophical Transactions of the Royal
Society A, 371(1983), 2013 doi:10.1098/rsta.2012.0071.

[11] A. McCray, O. Bodenreider, J. Malley, and A. Browne. Evaluating UMLS Strings for Natural
Language Processing. In Proceedings of the 2001 American Medical Informatics

Association Annual Symposium, pages 448–452, Portland, OR, USA, 2001.

[12] A. Roberts, R. Gaizauskas, M. Hepple, G.Demetriou, Y. Guo, I. Roberts, and A. Setzer.
Building a semantically annotated corpus of clinical texts. Journal of Biomedical Informatics,
42(5):950–66, October 2009

[13] Y. Li, K. Bontcheva and H. Cunningham. Adapting SVM for Data Sparseness and Imbalance:
A Case Study on Information Extraction. Natural Language Engineering, 15(02), 241-271, 2009

[14] K. Bontcheva, H. Cunningham, I. Roberts, A. Roberts, V. Tablan, N. Aswani, G. Gorrell.
Teamware: A Web-based, Collaborative Text Annotation Framework. Language Resources and
Evaluation. In Press, preprint: http://gate.ac.uk/sale/teamware-lre2012/teamware.pdf

[15] A. Roberts, R. Gaizauskas, M. Hepple, and Y. Guo. Combining terminology resources and
statistical methods for entity recognition: an evaluation. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation, LREC 2008, Marrakech, Morocco, May 2008

D1.4.2 Report on Coupling Manual and Automatic Annotation

Page 21 of 21

[16] A. Aronson. Filtering the UMLS metathesaurus for MetaMap. Technical report, U.S

National Library of Medicine, Lister Hill National Center for Biomedical Communications, Cognitive
Science Branch, 2005.

[17] A. Hanbury, C. Boyer, M. Gschwandtner, H. Müller. KHRESMOI: towards a multi-lingual
search and access system for biomedical infromation. Med-e-Tel, Luxembourg, 2011.

