
Grant Agreement Number: 257528

KHRESMOI

www.khresmoi.eu

Report on results of second phase scalability and

performance evaluation

Deliverable number D5.6

Dissemination level Public

Delivery date June 2014

Status Final

Author(s) Konstantin Pentchev, Vassil Momtchev

This project is supported by the European

Commission under the Information and

Communication Technologies (ICT) Theme of

the 7th Framework Programme for Research

and Technological Development.

D5.6 Report on results of second phase scalability and performance evaluation

Page 2 of 18

Table of Contents

1 Executive summary .. 4

2 Introduction .. 4

3 Metrics for scalability and performance .. 5

3.1 Document annotation and index service .. 5

3.2 Web services ... 6

4 Test infrastructure ... 7

4.1 Components for batch process ... 7

4.2 JMeter for Web services ... 7

5 Results for performance and scalability ... 7

5.1 Document Indexing and Annotation Workflow ... 7

5.2 Web services ... 9

5.2.1 SPARQL Endpoint .. 9

5.2.2 Disambiguator ... 10

5.2.3 Quick Search ... 12

5.2.4 Co-occurrence Search .. 13

5.2.5 Semantic type-ahead search .. 14

6 Conclusion ... 15

7 References ... 16

8 Appendix ... 17

RadLex UMLS mapping ... 17

RadLex labels ... 17

MeSH labels ... 17

RadLex labels ... 18

Default .. 18

 Table of Figures

Figure 1: Document annotation and indexing workflow ... 4

Index of Tables

Table 1: Measurements for the Document Indexing and Annotation Workflow.. 8

Table 2: Performance statistics for SPARQL endpoint for 1 thread ... 9

Table 3: SPARQL endpoint performance statistics for 10, 100 and 1000 concurrent threads 10

Table 4: Disambiguator performance statistics for 1 thread .. 11

Table 5: Disambiguator performance statistics for 10, 100 and 1000 concurrent threads 11

Table 6: Quick Search performance statistics for 1 thread .. 12

Table 7: Quick Search performance statistics for 10, 100 and 1000 concurrent threads 13

D5.6 Report on results of second phase scalability and performance evaluation

Page 3 of 18

Table 8: Co-occurrence Search performance statistics for 1 thread .. 13

Table 9: Co-occurrence Search performance statistics for 10, 100 and 1000 concurrent threads 14

Table 10: Semantic Type-ahead Search performance statistics for 1 thread ... 15

Table 11: Semantic Type-ahead Search performance statistics for 10, 100 and 1000 concurrent threads

 ... 15

 List of abbreviations

API Application Programming Interface

CPU Central Processing Unit

CSV Comma Separated Values

ETL Extract Transform Load

GAPP GATE Application

GATE General Architecture for Text Engineering

HON Health On the Net

HTML HyperText Markup Language

IE Information Extraction

KB Knowledge Base

KS Large Scale Biomedical Knowledge Server

NER Named Entity Recognition

RDF Resource Description Language

REST REpresentational State Transfer

SKOS Simple Knowledge Organization System

SPARQL SPARQL Protocol and RDF Query Language

SSD Solid State Drive

TOS Talend Open Studio

UMLS Unified Medical Language System

URI Universal Resource Identifier

VM Virtual Machine

WS Web Service

D5.6 Report on results of second phase scalability and performance evaluation

Page 4 of 18

1 Executive summary

Deliverable D5.6 reports on the performance and scalability results of Khresmoi Biomedical

Knowledge Server (KS) [1]. In the previous evaluation [2] of the KS the underlying RDF database –

OWLIM [3], custom developed query APIs and use case datasets loading and query answer

performance and scalability were measured. This report provides an evaluation of the old services in

the context of increased data load and cloud deployment, and of new applications developed as part of

T5.4 [4] and T5.5 [5].

The detailed analysis of the offline service for semantically annotating and indexing documents shows

good performance and flexibility. It is able to process the entire document set selected for year four in

less than three days. In addition, it is designed to scale both vertically and horizontally. Therefore, we

conclude that the approach can be used for processing even billions of documents in a multi-node

setup.

All web services evaluated show excellent performance. Even under heavy concurrent load of

thousand requests per second the response times fulfil the requirements discussed and defined in this

document. Slight changes in performance with increasing number of requests is observed, but does not

cause the unresponsiveness. Deployment in the cloud does not appear to affect the services

performance either positively or negatively. It is recommended to consider horizontal scaling of the

services if concurrent load in the ranges of hundred thousand to million requests is expected.

2 Introduction

The scope of task T5.3 “Evaluation of biomedical knowledge server“, of which this deliverable is part,

is to evaluate the performance and scalability of the final KS. This includes both the previously

evaluated services and new ones developed as results of T5.1, T5.4 and T5.5. Our aim is to not only

measure the current state of the system, but also to compare it to the previous evaluation. Better

performance is expected not only due to improvements to the software, but also due to the deployment

in the Khresmoi Cloud. We have formally divided the services in two, based on whether or not they

are exposed online.

The group of offline services consist solely of the document annotation and indexing workflow – a

Talend job for semantic information extraction (IE) and semantic indexing from crawled pages,

Wikipedia and PubMed (referred to as documents) [5]. The goal of the process is to enable semantic

search over the evolving set of documents: crawled HTML pages, Wikipedia articles and PubMed

abstracts. The evaluation of this service concentrates on performance with regard of the number of

documents processed per second, its stability and scalability options. There are several steps involved

in the process depicted in Figure 1:

Figure 1: Document annotation and indexing workflow. The figure shows an abstract sequence

of the steps performed for each document. First a batch of crawled documents is retrieved from

HON CouchDb. Then, preprocessing, e.g. setting encoding and language, is applied, before

converting to GATE Documents. Semantic IE is performed on the latter with a pipeline

D5.6 Report on results of second phase scalability and performance evaluation

Page 5 of 18

developed in WP1[7]. Finally, the annotated documents are sent to a MIMIR server for

indexing.

The separate steps in the first version of the workflow were sequentially coupled, i.e. a next step could

not begin until the previous one is completely finished. In the final version we decoupled different

stages to achieve better performance as shown in Section 5.1.

The second group consists of RESTful web-services that expose different information retrieval (IR)

methods. There are two such services that were tested in D5.3[2], which we are going to re-evaluate

with the current amount of data loaded and cloud deployment:

 SPARQL Endpoint

o used for querying raw RDF data

 Disambiguator

o used for disambiguating resources from text input

There is also a set of new services developed that we will evaluate using the same methodology:

 Quick Search

o basic full-text and resource search

 Co-occurrence Search

o faceted resource search

 Semantic type-ahead search

o guided resource search based on type hierarchies and predicate domain and range

values

As they can all be evaluated by simulating web request load, the same metrics and infrastructure were

used for them, described in Section 3.2 and Section 4.2 respectively. No evaluation of the semantic

store OWLIM was performed, as this was tested in D5.3 and no major differences can be reported.

3 Metrics for scalability and performance

In this section we present metrics used to measure the scalability and performance for the different

executed tests. Similar to the previous evaluation described in D5.3[2], the aim is to have quantitative

measurements of the system’s ability to handle large and increasing amounts of data and load for both

offline and online services.

3.1 Document annotation and index service

For the document service we have identified the following metrics to quantify its performance:

 T – the total processing time

 N – total processed documents

 P – the average processing speed in [doc/sec]

 ∆P – the change in average speed

The most important parameter is the average processing speed, which will allow us to estimate the

required time for future processing. However, the change in average speed can give insights into

D5.6 Report on results of second phase scalability and performance evaluation

Page 6 of 18

bottlenecks and possible improvements with regard to the amount of processed documents and the

specific document sets.

3.2 Web services

The performance and scalability metrics for online services are the same as defined in D5.3 [2]. As

stated in that report, we are interested not only in the average request response time, but in the

corresponding minimum and maximum and variance. Ideally, the services will respond consistently,

i.e. the deviation of response times for different requests will be small. Finally, we also need to check

the amount of data returned with each response in order to identify bandwidth bottlenecks. The

performance metrics are defined as follows:

 RPi
avg – the average response time for service i

 RPi
max – the maximum response time for service i

 RPi
min – the minimum response time for service i

 RVi – the response time variance for service i

 Di
avg – the average response size for service i

 Di – total response size for service i (in a series)

Scalability in the context of web services can be defined as a service’s ability to respond to increasing

request load in consistent times. Therefore, we need to measure the difference in response times in a

series of increasing simultaneous requests. The metrics are defined as follows:

 ∆RPi
avg – the change in average response time for service i over time series G0..n

 ∆RPi
max – the change in maximum response time for service i over time series G0..n

 ∆RPi
min – the change in minimum response time for service i over time series G0..n

 RVi
G – the response time variance for service i over time series in G0..n

In order to calculate these variables with respect to the absolute amount of change, we use the square

root of the squared differences:

 ∆RPi
avg = 1/(n -1)∑ √(RPi

avg(k) - RPi
avg(k-1))2, where RPi

avg(0) is the single user sampling

average response time

 ∆RPi
min = 1/(n -1)∑ √ (RPi

min(k) - RPi
min(k-1)))2, where RPi

min(0) is the single user sampling

minimum response time

 ∆RPi
max = 1/(n -1)∑ √ (RPi

max(k) - RPi-1
max(k-1)))2, where RPi

max(0) is the single user sampling

maximum response time

In addition, we define two response time thresholds for different services based on their perceived

usage:

 100ms - for services that need to react instantaneously

 1sec - for services that need not react instantaneously, but must not be perceived as

unresponsive

The values are based on the research published by Nielses [8].

D5.6 Report on results of second phase scalability and performance evaluation

Page 7 of 18

4 Test infrastructure

4.1 Components for batch process

For measuring the performance and scalability of the document annotation and indexing service, the

Talend Performance component was used. It was developed and used for the evaluation of the

OWLIM loading workflow in D5.3, section 6.1 [2]. Because of the generic nature of this component –

it measures the number of information units that pass through it for a given amount of time – it was

used without modification.

4.2 JMeter for Web services

For generating requests to our RESTful web services and simulating concurrent load, we used Apache

JMeter – an open-source desktop application for conducting functional and performance tests of web

applications [6].

The tool provides a powerful interface to design integration and performance tests, and to monitor the

execution times, data transferred and response status. It comes out of the box with components for

graphical analysis as well as report generation. Requests inside test plans can be randomized and

repeated. Components for authentication are available as well.

Concurrent load is simulated by defining a number of users for the test plan. Each user is executing

sampling requests in separate asynchronous thread. Thereby, each user has to perform the entire test

plan defined. The user initialization can also be staged so that there is a general increase in the amount

of concurrent requests.

All subsequent online query tests presented into the current report are executed with a JMeter test

plan, which can be made available on request.

5 Results for performance and scalability

This section presents the results of the performed evaluation.

5.1 Document Indexing and Annotation Workflow

The first version of the Document Indexing and Annotation Workflow was completed in September

2013. With the annotation step estimated as the bottleneck of the process (see Figure 1), it was

implemented to process documents on separate threads. The statistics reported in Table 1 were

recorded during a full indexing run in the same month on the hon-2 server with 17 cores available. It is

evident from the results that almost 11 days were required to process all the relevant resources. While

the process was divided in steps based on the crawl date of documents to allow for some flexibility

(e.g. recovering after errors), it was still very rigid and cumbersome. The average speed of 11

documents/sec was also much lower than expected from test runs performed while developing the

GATE pipeline. Detailed evaluation of the pipeline identified the fetching of documents from

CouchDb as the bottleneck. Effectively, new batches of data were retrieved from a single thread only

after the previous batch was fully processed. A new version was developed with the retrieving and

processing completely decoupled. The full logs of all the runs can be provided on request.

D5.6 Report on results of second phase scalability and performance evaluation

Page 8 of 18

Document set N [doc] T [hh:mm:ss] P [doc/sec] ∆P [doc/sec] Version

All 11'211'924 260:28:26 11 0.0039 Sept 2013

Wikipedia 31'703 00:25:17 20 6.5454 May 2014

Pubmed 1'671'633 13:03:17 35 0.1208 May 2014

HTML (en, de, cs) 1'828'766 13:40:19 37 0.1388 May 2014

HTML (fr, es) 1'270'681 17:01:09 20 0.5319 May 2014

Table 1: Measurements for the Document Indexing and Annotation Workflow. The first row is a

summarization of a full indexing with the first version of the job. The rest of the table gives

detailed statistics about separate document sets processed with the latest version of the

workflow.

Rows 2 to 4 in Table 1 present the results from several test runs with the new version based on

different document sets. It is evident that a notable improvement in speed of 2 to 4 times was

achieved. Thus, the full semantic annotation and indexing could be performed in about 2 days (note

that the number of documents to process was also reduced due to changes in classification by HON).

However, one can note that there are some differences in performance between the document sets –

Wikipedia and French/Spanish HTML pages were processed notably slower. In the first case we must

consider that the set consists of relatively few documents and was completed in ~25 minutes total.

This time includes the initialization phase, during which Gazetteers are loaded. As mentioned in the

paragraph above, the executions were performed on 17 cores. Thereby, for each thread a separate

Gazetteer is initialized (with some resource sharing), which is a relatively slow process. From the logs

we concluded that the initialization phase requires ~10 minutes to complete, which is about 40% of the

total time for processing Wikipedia. As no documents are processed at all during this period, we can

conclude that the statistic is skewed and the actual processing speed is 31703docs/((25-10))*60+17sec

= 34.57 docs/sec. This is consistent with the measurements for Pubmed and the English, German and

Czech pages.

The slow processing speed for the French and Spanish HTML pages can in turn be explained by an

interruption of exactly 10 hours due to network outage (between 15:23:31 on 02.05 and 01:23:40 on

03.05). The adjusted processing time is 07h and 01min, or an average speed of 50 docs/sec. The better

performance compared to the rest is expected, as the GATE pipeline performs no semantic annotation

for French and Spanish pages, but only tokenization and full-text indexing.

In order to assess the scalability of the workflow, we are interested in the change of performance with

increasing number of documents processed - ∆P. A high value would indicate instability and possible

decrease, which might make the approach unusable for document sets in the billions range. However,

the variance in performance is negligibly small for the Pubmed abstracts and HTML pages. Table 1

reports slightly higher values for the Wikipedia pages processing, but we can ignore it due to its small

size and long initialization phase. Therefore, we conclude that the amount of documents to be

processed is not affecting the performance of the workflow.

Of course, the linear dependency between the number of documents and the time required to process

them means that the current setup will take unfeasibly long to process documents in the billions range.

Possible solutions to scale up the workflow are to either increase the number of cores on the server

(vertical scaling) or to perform indexing on several machines in parallel (horizontal) [9]. The second

approach offers more potential, as we have seen that the retrieval speed of documents from CouchDb

can be a limiting step. Adding more “processing nodes” can circumvent the single point of retrieval

D5.6 Report on results of second phase scalability and performance evaluation

Page 9 of 18

issue and assuming that CouchDb can efficiently respond to multiple concurrent requests, will yield

processing times lower by times the number of nodes. Thereby, document sets from the original

collection can be derived by logically sharding them by corpus and/or date and will be indexed in

separate MIMIR indices. Multiple nodes are easy to set up, because the workflow requires only JAVA

and GATE to be installed on the node and any communication with other services is performed via

Web APIs.

5.2 Web services

As mentioned in Section 3.2, we want to test not only the performance of each web service , but also

how scalable it is under concurrent load. Therefore, for each service we executed four evaluations –

one with a single user and three with increasing number of users (from 10 to 1000). A set of requests

to each service are defined and executed in random order multiple times. We report the detailed

statistics for the reference single-user evaluation and only the aggregated statistics for the multi-user

tests. The KS evaluated is running on a 64-bit Ubuntu VM, with 8 Xeon E5-2620 CPUs (2 GHz),

32GB RAM and SSD disks. Caching of web requests was disabled in the application server and the

web application.

5.2.1 SPARQL Endpoint

In this section we present the evaluation results for our SPARQL endpoint. As this is the primary way

to accessing the RDF data in our semantic repository it will test primarily the query answering

performance of OWLIM [3]. As per recommendation after our previous evaluation we included both

simple and complex SPARQL queries in order to get a full understanding of any shortcomings. The

queries are selected from real use cases in the Khresmoi project, e.g. for indexing, mapping between

dataset etc. The queries are listed in the appendix (Section 8). The results of the performance

evaluation are given in Table 2:

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

Radiowiki 100 75 62 236 28.21 71.37 37212

Select all 100 108 64 252 16.00 103.71 53495

RadLex to UMLS

mapping
100 131 118 222 12.92 106.01 54775

RadLex labels 100 69 59 202 19.31 59.68 30509

MeSH labels 100 113 106 232 12.98 91.76 47046

TOTAL 500 99 59 252 30.06 427.77 44607

Table 2: Performance statistics for SPARQL endpoint for 1 thread

All queries were answered in less than 300ms with average response times around 100ms. This is

excellent performance given that the repository contains more than 1.2 billion statements. We must

note that the queries, while complex from a semantic point of view, do not perform full-text matching.

This was tested in D5.3 and showed worse response times.

D5.6 Report on results of second phase scalability and performance evaluation

Page 10 of 18

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

10 users 5000 185 60 986 56.90 618.59 44607

100 users 5000 200 102 1004 65.90 1532.88 44607

1000 users 5000 228 103 1084 65.68 1776.36 44607

Table 3: SPARQL endpoint performance statistics for 10, 100 and 1000 concurrent threads

respectively

The performance of the service did not deteriorate under heavy concurrent load as is evident from

Table 3. We can calculate the following values for the change in performance :

 ∆RP
ij

avg = 1/(4 -1) (√ (185-99)2 + √ (200-185)2 + √ (228-200)2) = 43ms

 ∆RP
ij

min = 1/(4 -1) (√ (60-59)2 + √ (102-60)2 + √ (103-102)2) = 14.66ms

 ∆RP
ij

max = 1/(4 -1) (√ (986-252)2 + √ (1004-986)2 + √ (1084-1004)2) = 277.33 ms

Only the maximum response time shows significant change considering that the concurrent load has

been increased by 3 orders of magnitude. However, it is interesting that there is a significant increase

in response time only between one and 10 threads. Subsequent increase in user count results in only

minor deterioration of performance. Hence, we can expect that the service will scale well even beyond

our measurements and the average response time will remain below 1 second. Since the results are not

expected instantaneously, this is in accordance with the threshold defined in Section 3.2.

5.2.2 Disambiguator

For the Disambiguator service we re-use the sample request from D5.3[2] in order to directly compare

the results. Queries in different languages were sampled in order to test for possible inconsistent

performance. The results are presented in Table 4:

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

” Diabet” ES 100 80 61 507 61.95 41.25 15341

”Diabete” DE 100 68 61 132 9.77 35.56 13193

”Leukoc” CZ 100 68 58 141 13.26 16.71 6214

”Cancer” EN 100 72 63 178 14.40 37.07 13785

”Klein” DE 100 67 58 112 9.52 20.98 7757

D5.6 Report on results of second phase scalability and performance evaluation

Page 11 of 18

TOTAL 500 71 58 507 30.10 150.17 11258

Table 4: Disambiguator performance statistics for 1 thread

As in the previous evaluation report there is no significant difference in the response between the

different queries. However, there is a notable increase in the response times in comparison with the

values in D5.3:

 RPDisambiguator
avg = 71ms (was 14 ms)

 RPDisambiguator
max = 507ms (was 32 ms)

 RPDisambiguator
min = 58ms (was 9 ms)

 RVDisambiguator = 906.01ms (was 6.0025 ms)

The reason for this is increased complexity in the retrieval of results in order to yield more precise

suggestions. While previously only one request was made internally to the full-text indexer (Solr),

now two are performed. The first is looking only for exact matches of the user input, the second is

performing fuzzy string matching. Retrieving and merging these two requests is what caused the

increase in response time, as these are expensive operations that operate over the local network.

Moreover, while the current VM has more CPUs, their frequency is lower (2GHz compared to

2.5GHz). However, the average response time remains below the defined threshold of 100ms. The

improved precision of the suggested results was therefore more beneficial than a slightly delayed

response, which is probably not perceivable by human users.

The increased variance is more worrying, as it indicates inconsistent performance. This can be again

attributed to the two internal requests performed by the service and network instability, but it can also

indicate other problem, e.g. with the server deployment. Because the KS is now in a virtual machine in

the Khresmoi Cloud it is possible that resource management by the hypervisor causes additional

instability. We need to also acknowledge that significantly more data is transferred with each request.

The previous version of the Disambiguator served 3659 Bytes per request compared to 11258 Bytes

for the current version. This is more than a double increase and while a low-end bandwidth of 16

Mbit/s will still be able to stream more than 20000 responses it can also explain the increases in the

millisecond range.

The changes in performance observed might also have an implication for the scalability of the service.

Table 5 gives a summary of the results of the concurrent load evaluations.

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

10 users 5000 105 57 1403 105.71 353.05 11258

100 users 5000 117 56 1493 140.92 445.07 11259

1000 users 5000 133 57 1306 110.99 449.51 11258

Table 5: Disambiguator performance statistics for 10, 100 and 1000 concurrent threads

respectively

From these test results we calculate the following values for the metric defined in Section 3.2:

 ∆RP
ij

avg = 1/(4 -1) (√ (57-58)2 + √ (56-57)2 + √ (57-56)2) = 1ms

 ∆RP
ij

min = 1/(4 -1) (√ (105-71)2 + √ (117-105)2 + √ (133-117)2) = 20.33ms

D5.6 Report on results of second phase scalability and performance evaluation

Page 12 of 18

 ∆RP
ij

max = 1/(4 -1) (√ (1403-507)2 + √ (1493-1403)2 + √ (1306-1493)2) = 390.66 ms

It is evident that there is an increase in the maximum and average response times, while the minimum

response time remains the same. The response time variance is also increased more than threefold.

However, the average response time remains close to the threshold of 100 ms and increases only

slightly for concurrent loads increasing by orders of magnitude. Moreover, the maximum response

times, while increasing significantly between a single user and multiple users, remain in the range of

1400ms. From these statistics we can conclude that the service itself is capable of handling large

numbers of concurrent requests and it comes down to the supporting hardware infrastructure exactly

what the performance will be.

5.2.3 Quick Search

The Quick Search service was evaluated similarly to the Disambiguator. However, we do not define a

strict threshold of 100 ms for its average response time as it performs a more complex operation and is

moreover not required to provide results for every character input of the user. Therefore, response

times below 1 second are considered good performance.

 We defined 5 sampling requests for different datasets in order to capture possible discrepancies in the

performances based on data specifics (composition and size). The performance evaluation results are

presented in Table 6:

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

Search ImageClef 100 75 57 494 46.31 6.66 2573

Search UMLS 100 78 57 457 66.41 5.42 2076

Search Drugbank 100 74 59 441 51.46 3.15 1204

Search RadioWiki 100 67 58 128 13.29 3.97 1527

Search Radiology

Reports
100 72 58 490 44.66 6.75 2581

TOTAL 500 73 57 494 47.83 25.72 1992

Table 6: Quick Search performance statistics for 1 thread

It is evident that the Quick Search service performs very well with average response times below 100

ms and the maximum response time below 500ms. The average response size of 1992 Bytes is also

very low and will not impose any limitations with regard to network bandwidth.

From the concurrent load results presented in Table 7 we can also conclude that the service can handle

large numbers of users with ease. There is an increase in the average and maximal response times, but

the values remain well below one second. This is confirmed by the calculations for the change in

response times:

 ∆RP
ij

avg = 1/(4 -1) (√ (107-73)2 + √ (133-107)2 + √ (173-133)2) = 33.33ms

 ∆RP
ij

min = 1/(4 -1) (√ (55-57)2 + √ (54-55)2 + √ (67-54)2) = 5.33ms

 ∆RP
ij

max = 1/(4 -1) (√ (604-494)2 + √ (551-604)2 + √ (635-551)2) = 82.33 ms

D5.6 Report on results of second phase scalability and performance evaluation

Page 13 of 18

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

10 users 5000 107 55 604 88.20 31.46 1992

100 users 5000 133 54 551 113.00 70.01 1992

1000 users 5000 173 67 635 125.08 79.68 1992

Table 7: Quick Search performance statistics for 10, 100 and 1000 concurrent threads

respectively

5.2.4 Co-occurrence Search

The co-occurrence search service differs from the quick search service in that it performs queries in

specific logical elements of the data(i.e. properties or fields) and calculates occurrence counts for the

values in these elements. Therefore, we can assume that it is a more complex operation and the

expected times should be higher. Still, we judge that a 1 sec response time is required for a good

experience. The performance results are presented in Table 8:

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

Cooccurrence

Radiology Reports
100 195 107 662 99.91 37.28 33512

Cooccurrence

Radiology Reports 2
100 146 62 532 72.83 19.96 17950

Cooccurrence

RadioWiki
100 68 59 143 14.87 1.65 1471

Cooccurrence

ImageClef 2
100 214 116 652 88.41 43.87 39439

Cooccurrence

ImageClef
100 250 113 906 147.47 44.22 39560

TOTAL 500 175 59 906 113.93 145.38 26386

Table 8: Co-occurrence Search performance statistics for 1 thread

From the sample data we can again conclude that the service is performing according to the

specification. The average response time is higher than for the quick search, but below 200ms and the

maximum response time is below the 1sec threshold. It is notable however, that the average response

size is an order of magnitude larger with 26386 Bytes. This means that a 16Mbit connection can

support only 79 concurrent responses. Table 9 gives a good overview of the performance of the

service under concurrent load:

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB/s] D

i
avg [B]

D5.6 Report on results of second phase scalability and performance evaluation

Page 14 of 18

10 users 5000 193 57 1215 105.52 359.06 26386

100 users 5000 237 57 1727 152.39 888.88 26386

1000 users 5000 249 57 2177 149.86 1036.28 26386

Table 9: Co-occurrence Search performance statistics for 10, 100 and 1000 concurrent threads

respectively

Again there is a small increase in the average response times and a larger one in the maximum

response times, which goes beyond the 1sec threshold. We can calculate the following values for the

change in performance:

 ∆RP
ij

avg = 1/(4 -1) (√ (193-175)2 + √ (237-193)2 + √ (249-237)2) = 28.33ms

 ∆RP
ij

min = 1/(4 -1) (√ (57-59)2 + √ (57-57)2 + √ (57-57)2) = 0.66ms

 ∆RP
ij

max = 1/(4 -1) (√ (1215-906)2 + √ (1727-1215)2 + √ (2177-1727)2) = 423.66 ms

Obviously, the service will perform well on average with increasing concurrent load, but there will be

outliers with much larger response times. This could maybe be amended by vertically scaling the

service with a higher bandwidth network. However, we expect only very few users to be affected.

5.2.5 Semantic type-ahead search

The semantic type ahead service acts similarly to the disambiguator, but instead of suggesting

resources for disambiguation guides the user in the composition of a valid SPARQL query. This

imposes additional restrictions on the suggestion in the form of domain and range values for

predicates. Four request were defined – one for each operation that the service performs:

 suggest subjects

 suggest predicates

 suggest objects

 assemble SPARQL query and execute

The final query should retrieve all Drugs that are applicable do Diabetes (C0011847) patients. We

expect response times below 100ms.

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB] D

i
avg [B]

Typeahead Predicate 100 60 56 121 9.11 1.49 536

Typeahead Object 100 155 114 527 54.56 54.37 19306

Typeahead Subject 100 63 57 118 10.35 1.41 499

D5.6 Report on results of second phase scalability and performance evaluation

Page 15 of 18

Typeahead SPARQL 100 61 56 110 6.69 2.85 1007

TOTAL 400 85 56 527 49.37 59.61 5337

Table 10: Semantic Type-ahead Search performance statistics for 1 thread

It is evident from the performance evaluation results in Table 10 that the service handles requests

efficiently according to our specification. The average response time is below 100ms and there are

only a few outliers with a high maximum response time. However, we should note that the object

suggestion query is performing worse than the other operations. This is probably due to having most

restrictions placed on it, which makes it computationally more complex. Another possible cause is the

large response size – 19306 Bytes – which is an order of magnitude bigger than for the other

operations. Finally, similarly to the disambiguator, the object operation executes two queries to the

internal full-text index. This might need to be refactored in the future, depending on the scalability

evaluation results shown in Table 11:

Request N RP
i
avg[ms] RP

i
min[ms] RP

i
max[ms] √RV

i
[ms] D

i
[KB] D

i
avg [B]

10 users 4000 82 53 584 50.62 79.26 5337

100 users 4000 85 52 779 55.65 156.57 5337

1000 users 4000 96 52 1269 62.08 170.54 5337

Table 11: Semantic Type-ahead Search performance statistics for 10, 100 and 1000 concurrent

threads respectively

Even for a 1000 concurrent users the average response time remains below 100 ms. The maximum

response times increase as for other services. We can calculate the following changes in performance:

 ∆RP
ij

avg = 1/(4 -1) (√ (82-85)2 + √ (85-82)2 + √ (96-85)2) = 5.66ms

 ∆RP
ij

min = 1/(4 -1) (√ (53-56)2 + √ (52-53)2 + √ (52-52)2) = 1.33ms

 ∆RP
ij

max = 1/(4 -1) (√ (584-527)2 + √ (779-584)2 + √ (1269-779)2) = 247.33 ms

There is virtually no change in the minimum and average response times. Similar to the Disambiguator

service only the maximum values show a significant increase. Handling of these outliers should follow

the same recommendations as in Section 5.2.2.

6 Conclusion

In this document we evaluated the performance of both online and offline services developed for the

KS. The report set metrics to assess the system capabilities, defines an evaluation approach and

controlled infrastructure to execute the tests.

D5.6 Report on results of second phase scalability and performance evaluation

Page 16 of 18

Section 5.1 showed that the Talend component for semantic annotation and indexing do not impede

performance. The ETL job generated using these components processes documents limited only by the

speed of the source (CouchDb) and the semantic annotation pipeline, which is a complex operation.

Still it is possible to update or recreate the entire Khresmoi semantic index in a few days. The

workflow is also easy to scale vertically, because of the flexible design of the components and

multithread support. Horizontal scaling by running multiple instances of the job on different VMs is

also possible if even larger volumes of data need to be processed.

The web services exposed by the KS have been shown in Section 5.2 to have excellent performance

with average response times around and below the 100ms range. Especially the SPARQL endpoint

showed excellent performance considering the different and complex queries tested. One could argue

that the queries tested are not complex enough, as they do not include nested queries and aggregates,

but these are the type of requests used in Khresmoi. Therefore, we can conclude that the service fully

covers the needs of the project.

However, some of the services’ responses under heavy user load take significantly longer. While these

are only outliers, it is worth investigating techniques to eliminate these. Possible solutions include

hardware and network upgrades, improvements to the application server configuration and caching

(which was disabled during the tests).

However, we must also note that the cloud deployment does not improve the performance of the

services themselves as is evident from the comparison of the Disambiguator evaluation in Section

5.2.2. The only benefit is that communication with other Khresmoi services will be restricted to the

local network. Still, most of the KS services have a small response size, with only the Co-occurrence

Search possibly benefiting from this.

7 References

[1] K. Pentchev, V. Momtchev. Report on data source integration. Khresmoi project deliverable

D5.1. August 2011

[2] K. Pentchev, V. Momtchev. Scalability and performance evaluation report. Khresmoi project

deliverable D5.3. August 2011

[3] OWLIM Documentation, http://owlim.ontotext.com

[4] K. Pentchev, V. Momtchev. D. Markonis, T. Schlegl. Report on consistency checking rules for

information extraction. Khresmoi project deliverable D5.4. May 2013

[5] K. Pentchev, V. Momtchev. Sustainable biomedical knowledge infrastructure. Khresmoi

project deliverable D5.5. February 2014

[6] The Apache Software Foundation, http://jmeter.apache.org/

[7] A. Roberts, J. Petrak, C. Boyer, L. Dolamic, A. Hanbury, M. Dittenbach, J. Gobeil, M. Novak. Prototype

and report on semantic indexing and annotation for information retrieval. Khresmoi project deliverable

D1.7. February 2014

[8] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc. Chapter 5. ISBN 012-5-184-

050. 1993

[9] H. El-Rewini, M. Abd-El-Barr . Advanced Computer Architecture and Parallel Processing. John Wiley

& Son. p. 66. ISBN 978-0-471-47839-3. April 2005, Retrieved October 2013.

http://owlim.ontotext.com/
http://jmeter.apache.org/

D5.6 Report on results of second phase scalability and performance evaluation

Page 17 of 18

8 Appendix

RadLex UMLS mapping

RadLex labels

MeSH labels

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX radlex:

<http://bioontology.org/projects/ontologies/radlex/radlexOwlDlComponent#>

SELECT distinct ?uri ?value WHERE {

 ?uri rdf:type radlex:pathophysiology_metaclass .

 ?uri radlex:Preferred_name ?value .

}

PREFIX skos-xl: <http://www.w3.org/2008/05/skos-xl#>

SELECT * WHERE {

 ?s a skos:Concept ;

 skos-xl:prefLabel ?l .

 ?l skos:note ?note .

 filter regex(?note, "german|french|czech|mesh$", "i") .

 ?l skos-xl:literalForm ?literal

}

PREFIX radlex:

<http://bioontology.org/projects/ontologies/radlex/radlexOwlDlComponent#>

SELECT ?radlexEntity ?umlsEntity ?prefLabelEn ?prefLabelSp

WHERE {

 ?radlexEntity a radlex:RID0 ;

 skos:exactMatch ?umlsEntity;

 radlex:Preferred_name ?prefLabelEn .

 GRAPH <http://linkedlifedata.com/resource/umls> {

 ?umlsEntity a skos:Concept

 } .
 ?umlsEntity skos:prefLabel ?prefLabelSp .

 FILTER (lang(?prefLabelSp) = 'es') .

 FILTER (lang(?prefLabelEn) = 'en')

}

D5.6 Report on results of second phase scalability and performance evaluation

Page 18 of 18

RadLex labels

Default

SELECT * WHERE {

 ?s ?p ?o .

}

PREFIX radlex:

<http://bioontology.org/projects/ontologies/radlex/radlexOwlDlComponent#>

SELECT distinct ?uri ?value WHERE {

 GRAPH <http://khresmoi.eu/resource/radioWiki> {

 ?uri <http://linkedlifedata.com/resource/lifeskim/mentions> ?value .

 }

 ?value rdf:type radlex:anatomy_metaclass

}

